Twenty-five years of organic chemistry with diiodosamarium: an overview

Tetrahedron 59 (2003) 10351

Henri B. Kagan

Laboratoire de Synthèse Asymétrique (UMR 8075), Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, 91405 Orsay, France

Sml₂ Products of electron-transfer addition coupling reactions radical chemistry samarium Barbier organosamariums cyclization

Substituents effect on molecular structures of 13-vertex *closo*-metallacarboranes of rare earths. Synthesis and

Tetrahedron 59 (2003) 10373

structural characterization of metallacarboranes bearing *nido*- and *arachno*-carborane ligands Shaowu Wang, ^{a,b} Yaorong Wang, ^a Mak-Shuen Cheung, ^a Hoi-Shan Chan and Zuowei Xie^{a,*}

^aDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

^bInstitute of Organic Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China

Synthesis of lanthanide(II)-imine complexes and their use in carbon-carbon and carbon-nitrogen unsaturated bond transformation

Tetrahedron 59 (2003) 10381

Ken Takaki,* Kimihiro Komeyama and Katsuomi Takehira

Department of Chemistry and Chemical Engineering, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8527, Japan

Ar N Yb or Sm
$$\rightarrow$$
 N Ln (hmpa)_n Ph cat.

R¹ \rightarrow R² \rightarrow PhSiH₃ PhH₂Si \rightarrow SiH₂Ph

Reduction and reductive coupling of imines by Sm(II)-based reagents

Tetrahedron 59 (2003) 10397

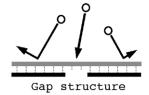
Myeongseob Kim, ^a Brian W. Knettle, ^a Anders Dahlén, ^b Göran Hilmersson^{b,*} and Robert A. Flowers, II^{a,*}

^aDepartment of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA

^bDepartment of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden

The reductive coupling of aldimines and a ketimine by a series of Sm(II) reagents were examined. Generally, $Sm\{N[Si(CH_3)_3]_2\}_2$ provided the best diastereoselectivity and $SmI_2/Et_3N/H_2O$ was found to effectively reduce or couple all imines examined in this study.

Hydrolysis of DNA by cerium(IV)/EDTA complex


Tetrahedron 59 (2003) 10403

Yoshihito Kitamura, Jun Sumaoka and Makoto Komiyama*

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

Gap-site in substrate DNA is selectively hydrolyzed by homogeneous solution of Ce(IV)/EDTA complex. The reactions have been kinetically analyzed.

O: Ce(IV)/EDTA complex

Isospecific polymerizations of alkyl methacrylates with a bis(alkyl)Yb complex and formation of stereocomplexes with syndiotactic poly(alkyl methacrylate)s

Tetrahedron 59 (2003) 10409

Guizhong Qi, Yuu Nitto, Akira Saiki, Taketoshi Tomohiro, Yuushou Nakayama and Hajime Yasuda*

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Higashi-Hiroshima 739-8527, Japan

$$CH_2=C \xrightarrow{Me} \frac{Yb[C(SiMe_3)_3]_2}{COOR} \xrightarrow{Me} isotacticity$$

$$R=Me, CH_2CH_2NMe_2$$

Tandem mass spectrometric analysis of rare earth(III) complexes: evaluation of the relative strength of their Lewis acidity

Tetrahedron 59 (2003) 10419

Hideyuki Tsuruta, a Kentaro Yamaguchi and Tsuneo Imamoto a,*

^aDepartment of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^bChemical Analysis Center, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

$$[M(OTf)_2(hmpa)_4]OTf \longrightarrow [M(OTf)_2(hmpa)_2]^+$$

$$[M(OTf)_2(hmpa)_2]^+$$

$$[M(OTf)_2(hmpa)_2]^+$$

$$[M(OTf)_2(hmpa)]^+$$
Relative strength of the Lewis acidity $\Longrightarrow In\{[MF(OTf)(hmpa)_2]^+\}/\{[M(OTf)_2(hmpa)]^+\}$

Lewis acid-catalyzed asymmetric hydroxymethylation of silicon enolates in aqueous media

Tetrahedron 59 (2003) 10439

Kei Manabe, Shunpei Ishikawa, Tomoaki Hamada and Shū Kobayashi*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, CREST, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

OSiMe₃
$$R^1$$
 + aq. HCHO H_2O/THF R^2 R^2

Asymmetric Diels-Alder reactions in supercritical carbon dioxide catalyzed by rare earth complexes

Tetrahedron 59 (2003) 10445

Shin-ichi Fukuzawa,* Ken Metoki and Shin-ichi Esumi

Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Modular chiral polyether podands and their lanthanide complexes

Tetrahedron 59 (2003) 10453

Helen C. Aspinall,* Nicholas Greeves* and Edward G. McIver

Department of Chemistry, University of Liverpool, Donnan and Robert Robinson Laboratories, Liverpool L69 7ZD, UK

Lewis acid-catalyzed atom transfer radical cyclization of unsaturated $\beta\text{-keto}$ amides

Tetrahedron 59 (2003) 10465

Dan Yang,* Yi-Long Yan, Ka-Lun Law and Nian-Yong Zhu

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China

Induced circular dichroism by complexation of gadolinium(III) porphyrinates with chiral amino acids and dipeptides: effects of axial β -diketonate ligands on chirality sensing and recognition

Hitoshi Tamiaki,^{a,*} Satomi Unno,^a Eiji Takeuchi,^a Nobuyuki Tameshige,^b Satoshi Shinoda^b and Hiroshi Tsukube^b

^aDepartment of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan ^bDepartment of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

The 1:1 supercomplexes showed chirality-specific CD peaks in the Soret region; reverse S-shape for L-form and S-shape for D-form.

Catalytic asymmetric epoxidation of α,β -unsaturated carboxylic acid imidazolides and amides by lanthanide–BINOL complexes

Tetrahedron 59 (2003) 10485

Takashi Ohshima, Tetsuhiro Nemoto, Shin-ya Tosaki, Hiroyuki Kakei, Vijay Gnanadesikan and Masakatsu Shibasaki* Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

A novel photoinduced reduction system of low-valent samarium species: reduction of organic halides and chalcogenides, and its application to carbonylation with carbon monoxide

Yukihito Sumino, a Nami Harato, Yuri Tomisaka and Akiya Ogawa b,*

^aBulk Chemicals Process R & D Department Manufacturing Technology R & D Laboratories, Shionogi & Co., Ltd., 1-3, Kuise, Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan

^bDepartment of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan

$$RH \xrightarrow{\text{Sml}_2 - h \nu} CO \xrightarrow{\text{CO}} R$$

$$(X = CI, SePh, OTs)$$

$$(X = CI)$$

$$R \xrightarrow{\text{CO}} R$$

Chiral rare earth organophosphates as homogeneous Lewis acid catalysts for the highly enantioselective hetero-Diels-Alder reactions

Tetrahedron 59 (2003) 10509

Tetrahedron 59 (2003) 10499

Hiroshi Furuno,^{a,*} Tetsuji Hayano,^a Takeshi Kambara,^b Yuichi Sugimoto,^a Takeshi Hanamoto,^a Yumiko Tanaka,^a Yong Zhi Jin,^a Takumi Kagawa^b and Junji Inanaga^{a,*}

^aInstitute for Materials Chemistry and Engineering (IMCE), Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan ^bNanyo Research Laboratory, Tosoh Co. Ltd., Kaisei-cho, Shin-nanyo, Yamaguchi 746-8501, Japan

Rare earth alkyl and hydride complexes bearing silylenelinked cyclopentadienyl-phosphido ligands. Synthesis,

Tetrahedron 59 (2003) 10525

structures, and catalysis in olefin hydrosilylation and ethylene polymerization

Olivier Tardif, Masayoshi Nishiura and Zhaomin Hou*

Organometallic Chemistry Laboratory,

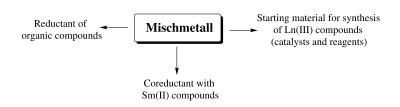
RIKEN Institute (The Institute of Physical

RIKEN Institute (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan

Further studies in the acyl-type radical additions promoted by SmI₂: mechanistic implications and stereoselective reduction of the keto-functionality

Tetrahedron 59 (2003) 10541

Lise M. Mikkelsen, Christina M. Jensen, Bettina Høj, Peter Blakskjær and Troels Skrydstrup*


Department of Chemistry, University of Aarhus, Langelandsgade 140, Aarhus C 8000, Denmark

Some uses of mischmetall in organic synthesis

Tetrahedron 59 (2003) 10551

Marie-Isabelle Lannou, Florence Hélion and Jean-Louis Namy*

Laboratoire de Catalyse Moléculaire, associé au CNRS, ICMO, Bat 420, Université Paris-Sud, 91405, Orsay, France.

Methyl methacrylate polymerization at samarium(II)-grafted MCM-41

Tetrahedron 59 (2003) 10567

Reiner Anwander,* Iris Nagl, Clemens Zapilko and Markus Widenmeyer Anorganisch-chemisches Institut, Technische Universität München, D-85747 Garching, Lichtenbergstrasse 4, München, Germany

PMS-PMMA composite materials are produced under mild conditions when Sm(II)-grafted mesoporous silica MCM-41 is used as an initiator for the graft polymerization of methyl methacrylate, the efficiency of which depends on the steric unsaturation of the Sm(II) surface sites.

Enantioselective radical allylation reactions using chiral lanthanide Lewis acids

Tetrahedron 59 (2003) 10575

Mukund P. Sibi,* Shankar Manyem and Rajesh Subramaniam

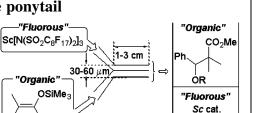
Department of Chemistry, Department of Chemistry, North Dakota State University, Fargo, ND 58105-5516, USA

Determining the scope of the lanthanide mediated, sequential hydroamination/C-C cyclization reaction: formation of tricyclic and tetracyclic aromatic nitrogen heterocycles

Tetrahedron 59 (2003) 10581

Gary A. Molander* and Shawn K. Pack

Roy and Diana Vagelos Laboratories, Department of Chemistry, 231 South 34th Street, University of Pennsylvania, Philadelphia, PA 19104-6323, USA


$$\frac{\text{cat. Cp}_2^*\text{NdCH(TMS)}_2}{\text{PhH, rt}}$$

$$73\%\text{y, 26: 1 dr}$$

'Fluorous nanoflow' system for the Mukaiyama aldol reaction catalyzed by the lowest concentration of the lanthanide complex with bis(perfluorooctanesulfonyl)amide ponytail

Koichi Mikami, ^{a,*} Masahiro Yamanaka, ^a Md. Nazrul Islam, ^a Kenichi Kudo, ^b Nobuko Seino ^c and Masaki Shinoda ^c

^aDepartment of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan ^bKYA Technologies Corporation, 16-4 Kawa-machi, Hachioji-city, Tokyo 191-0154, Japan ^cElectric Co. Ltd., 1 Fuji-machi, Hino-city, Tokyo 191-8502, Japan

Tetrahedron 59 (2003) 10593

25 - 200 nl/min

5 - 40 sec.

R = H or SiMe₃

up to 97% yield

OMe

PhCHO